Hydrogen Atom Abstraction by Metal–Oxo and Metal–Superoxo Complexes: Kinetics and Thermodynamics

Andreja Bakac*

Contribution from the Ames Laboratory, Iowa State University, Ames, Iowa 50011

Received September 16, 1999

Abstract: The superoxochromium complex $Cr_{aq}OO^{2+}$ abstracts a hydrogen atom from CMe₃CHO in acidic aqueous solution with $k = 0.16 \text{ M}^{-1} \text{ s}^{-1}$. This rate constant is only $\sim 10^2$ times smaller than that for the reaction of $Cr_{aq}O^{2+}$ with the same aldehyde, $k = 23 \text{ M}^{-1} \text{ s}^{-1}$, in contrast to the much greater reactivity difference between alkoxyl and alkylperoxyl radicals, $k_{t-BuO}/k_{t-BuO} \approx 10^6$. The absolute rate constants for hydrogen atom abstraction from a common reagent by metal-oxo and -superoxo species and the corresponding organic oxygen-centered radicals, RO[•] and ROO[•], can now be compared for the first time: $k_{BuO} (9 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}) > k_{CrO}(23) \ge k_{BuOO}(8) > k_{CrOO} (0.16)$. The reactivity of individual species is explained by the energetics of the O–H bonds in ROH, ROOH, $Cr_{aq}OH^{2+}$, and $Cr_{aq}OOH^{2+}$.

Introduction

The superoxochromium complex $Cr_{aq}OO^{2+}$ (hereafter $CrOO^{2+}$) and the aquachromium(IV) ion, $Cr_{aq}O^{2+}$ (hereafter CrO^{2+}), react with rhodium(III) hydrides $L(H_2O)RhH^{2+}$ ($L = (NH_3)_4$, cyclam, and *meso*-Me₆-cyclam) by hydrogen atom abstraction, eqs 1 and $2.^{1,2}$ The reactions of CrO^{2+} are faster than those of $CrOO^{2+}$, as one would intuitively expect, although the rate constants for the two sets of reactions differ by a factor of only about 10^2 .

$$CrOO^{2+} + LRhH^{2+} \rightarrow CrOOH^{2+} + LRh^{2+}$$
(1)

$$CrO^{2+} + LRhH^{2+} \rightarrow CrOH^{2+} + LRh^{2+}$$
(2)

There are no other examples of the reactions of oxo and superoxo complexes of the same metal with which to compare our data, so we turned to the chemistry of the related alkoxyl and alkylperoxyl radicals, RO[•] and ROO[•]. These radicals, just like the metal—oxo and —superoxo complexes, are crucial intermediates in metal-catalyzed oxidations of hydrocarbons.^{3–5} Both RO[•] and ROO[•] engage in hydrogen atom abstraction, but alkoxyl radicals are much more reactive, typically by 6–7 orders of magnitude.^{6–10}

It is not clear whether this amazing difference between the metal-based intermediates and O-centered organic radicals is related to the choice of the element-hydrogen bonds examined—C-H for RO• and ROO•,⁶⁻⁹ and Rh–H for CrO²⁺ and

(8) Roth, J. P.; Mayer, J. M. Inorg. Chem. 1999, 38, 2760-2761.

 $CrOO^{2+1,2}$ —or whether the observed reactivity pattern is a general feature governed by the thermodynamics of the O–H bonds in ROH, ROOH, $CrOH^{2+}$, and $CrOOH^{2+}$.

The present work addresses this question by examining hydrogen atom abstractions by CrO^{2+} and $CrOO^{2+}$ from the aldehydic C–H bond in pivalaldehyde. This compound is one of the few that have been shown^{11,12} to react with CrO^{2+} in a 1-e process, believed to be hydrogen atom abstraction. Many other organic materials, including alcohols, ethers, and carboxylic acids, react by hydride transfer and would not provide a suitable comparison for RO• reactions. Also, pivalaldehyde turned out to be sufficiently reactive so that both CrO^{2+} and $CrOO^{2+}$ undergo reduction at convenient rates. Finally, there are special features in the radical chemistry of aldehydes, which could be explored to obtain useful mechanistic information in the complicated reactions with $CrOO^{2+}$.

All of the work was carried out in acidic aqueous solutions, where pivalaldehyde exists as a 4:1 mixture of CMe₃CHO and CMe₃CH(OH)₂.¹³ The kinetic data provide no information on separate reactivities of the two forms, but the knowledge of the overall reactivity is sufficient in a comparative study of two reactions under identical experimental conditions. Similarly, the radicals derived from the two forms probably exist as a rapidly equilibrating mixture of CMe₃C[•]O and CMe₃C[•](OH)₂, eq 3, as is the case with the parent acetyl radicals, CH₃C•O/CH₃C•-(OH)₂.¹⁴ We are not aware of any kinetics or equilibrium data for reaction 3, but the analogous equilibrium for acetyl radicals is established rapidly ($k_{\rm f} = 2 \times 10^4 \text{ s}^{-1}$, $k_{\rm r} \approx 3 \times 10^4 \text{ s}^{-1}$)¹⁴ and has an equilibrium constant ($K_{hydr} \approx 1$) comparable to that of the aldehyde itself ($K_{hydr} = 1.2$). Extrapolated to the case of pivaloyl radicals, these data suggest that both forms exist in solution. To simplify the notation, the aldehyde and acyl radicals

⁽¹⁾ Bakac, A. J. Am. Chem. Soc. 1997, 119, 10726-10731.

⁽²⁾ Bakac, A.; Guzei, I. Inorg. Chem., in press.

⁽³⁾ Sheldon, R. A.; Kochi, J. K. Academic Press: New York ,1981.

⁽⁴⁾ Simandi, L. I. *Catalytic Activation of Dioxygen by Metal Complexes*; Kluwer Academic Publishers: Dordercht/Boston/London, 1992, Chapter 2.

⁽⁵⁾ Shilov, A. E. Activation of Saturated Hydrocarbons by Transition Metal Complexes, D. Reidel Publishing Company: Dordrecht, 1984, Chapter 4.

⁽⁶⁾ Heberger, K. J. Phys. Org. Chem. 1994, 7, 244-250.

⁽⁷⁾ Denisov, E. T.; Denisova, T. G. Kinet. Catal. 1993, 34, 824-831.

⁽⁹⁾ Tavadyan, L. A.; Mardoyan, V. A.; Musaelyan, M. V. Int. J. Chem. Kinet. 1996, 28, 555-564.

⁽¹⁰⁾ Denisov, E. T.; Denisova, T. G. Kinet. Catal. 1993, 34, 883-889.

⁽¹¹⁾ Bakac, A. Prog. Inorg. Chem. 1995, 43, 267-351.

⁽¹²⁾ Scott, S. L.; Bakac, A.; Espenson, J. H. J. Am. Chem. Soc. 1992, 114, 4205-4213.

⁽¹³⁾ Jaky, M.; Szammer, J. J. Phys. Org. Chem. 1997, 10, 420-426.

⁽¹⁴⁾ Schuchmann, M. N.; von Sonntag, C. J. Am. Chem. Soc. 1988, 110, 5698–5701.

are denoted CMe₃CHO and CMe₃C•O throughout the paper.

$$\operatorname{CMe}_{3}\operatorname{C}^{\bullet}\operatorname{O} + \operatorname{H}_{2}\operatorname{O} \underset{k_{\mathrm{r}}}{\overset{k_{\mathrm{f}}}{\rightleftharpoons}} \operatorname{CMe}_{3}\operatorname{C}^{\bullet}(\operatorname{OH})_{2} K_{\mathrm{hydr}}$$
(3)

Experimental Section

Stock solutions of CrOO²⁺ were prepared from Cr²⁺ and O₂, kept in ice, and used within 2 h of preparation, as previously described.¹⁵ Except in special cases, such solutions were stabilized¹¹ with 0.01– 0.3 M methanol. For air-free kinetic experiments, solutions of CrOO²⁺ were purged with Ar in a spectrophotometric cell for 10 min at 0 °C. The cell was then immersed into a thermostating bath inside the spectrophotometer cell compartment which was kept at 25 °C. The reaction was initiated 10 min later by injecting the aldehyde. Approximately 10% of CrOO²⁺ usually decomposed during the degassing and thermostating procedure. Solutions of CrO²⁺ were prepared from Cr²⁺ and air at 25 °C and used immediately.¹⁶

Solid [(NH₃)₅CoBr](ClO₄)₂ was available from previous work.¹⁷ Mn-(ClO₄)₂,6H₂O (G. F. Smith) was used as received. Commercial pivalaldehyde (Aldrich) contained an impurity that readily oxidized Fe_{aq}^{2+} . The aldehyde was purified¹⁸ by treatment with SnCl₂ followed by distillation, and stored over basic alumina in a refrigerator. Stock solutions of CMe₃CHO in CH₃CN were prepared daily and kept in ice under argon. The in-house distilled and ion-exchanged water was further purified by a passage through a Milli-Q purification system.

Kinetic solutions for the reaction of CrOO²⁺ with CMe₃CHO contained $\leq 14\%$ CH₃CN, introduced air-free with the aldehyde. Because of this small but variable volume of added CH₃CN, experiments with "O₂-saturated" solutions had [O₂] up to 14% below the solubility limit in H₂O (1.26 mM). The kinetics of the reactions of CrOO²⁺ were monitored at 245 nm, where the spectrum of CrOO²⁺ exhibits a maximum.¹⁹⁻²¹ This wavelength is also conveniently close to the minimum in the spectrum of pivalaldehyde (0.1 M HClO₄, 14% acetonitrile in water, $\lambda_{min} = 240$ nm, $\epsilon = 3.1$ M⁻¹ cm⁻¹). The kinetics in the presence of (NH₃)₅CoBr²⁺ were monitored at 245 nm. The kinetics of CrO²⁺/CMe₃CHO reaction were monitored at 240 nm, where CrO²⁺ has an estimated molar absorptivity of ~3000 M⁻¹ cm⁻¹.

A Shimadzu 3101 PC spectrophotometer was used for all the spectral and kinetic measurements. Gaseous products were determined with use of a Hewlett-Packard model 4790 gas chromatograph.

Results and Discussion

Kinetics. The overall rate and even the shape of the kinetic traces at 240 nm for the reaction between $CrOO^{2+}$ and CMe_3 -CHO depended strongly on reaction conditions, Figure 1. Initially, the stock solutions of $CrOO^{2+}$ contained ≤ 0.2 M methanol to scavenge any CrO^{2+} , a standard impurity in the absence of alcohols.¹¹ Under pseudo-first-order conditions ([CMe₃CHO] \gg [CrOO²⁺]) in O₂-saturated solutions containing methanol the kinetic traces were not exponential, and the rate was [CH₃OH]-dependent, Figure 1a. In the absence of oxygen, the traces became even more unusual and suggestive of autocatalysis, Figure 1b.

When methanol was omitted, reasonably good pseudo-first-order kinetics were obtained at high (\sim 1mM) O₂, Figure 1a, but at low [O₂] the reaction still appeared autocatalytic, Figure 1b.

- (15) Scott, S.; Bakac, A.; Espenson, J. H. Inorg. Chem. 1991, 30, 4112–4117.
- (16) Scott, S. L.; Bakac, A.; Espenson, J. H. J. Am. Chem. Soc. 1991, 113, 7787-7788.
- (17) Kelley, D. G.; Espenson, J. H.; Bakac, A. *Inorg. Chem.* **1990**, *29*, 4996–5000.
- (18) Gordon, A. J.; Ford, R. A. *The Chemist's Companion*; Wiley: New York, 1972; p 437.

(19) Brynildson, M. E.; Bakac, A.; Espenson, J. H. J. Am. Chem. Soc. **1987**, 109, 4579–4583.

(20) Sellers, R. M.; Simic, M. G. J. Am. Chem. Soc. 1976, 98, 6145-6150.

Figure 1. Effect of methanol and O_2 on the kinetic traces at 245 nm. Conditions: 30 mM CMe₃CHO, 0.10 M HClO₄. (a) 0.03 mM CrOO²⁺, 1 mM O₂, no MeOH (bottom trace, right ordinate), 0.12 mM CrOO²⁺, 0.008 M MeOH (middle trace, left ordinate), and 0.12 mM CrOO²⁺, 0.12 M MeOH (top trace, left ordinate). (b) Air-free, 0.03 mM CrOO²⁺, 8 mM MeOH (left ordinate), and no MeOH (right ordinate).

The complicated kinetic behavior indicated the involvement of reactive intermediates, such as CrO^{2+} and/or the radicals derived from CMe₃CHO. Judged by the methanol effect, CrO^{2+} is not only a left-over impurity from the preparation, but is probably generated in the course of the reaction as well. The large methanol effect stems from the fact that reactions 4–5 not only remove CrO^{2+} but also regenerate the reactant $CrOO^{2+}.^3$

$$CrO^{2+} + CH_3OH \rightarrow CH_2O + Cr^{2+} + H_2O k =$$

52 M⁻¹ s^{-1 12} (4)

$$Cr^{2+} + O_2 \rightarrow CrOO^{2+}$$
 (5)

The expected mechanism for the reaction between $CrOO^{2+}$ and CMe_3CHO produces $CrOOH^{2+}$ and acyl radicals $CMe_3C^{\bullet}O$ at an early stage, eq 6, followed by the chemistry in eq 7–8. The decarbonylation of $CMe_3C^{\bullet}O$ (eq 7a)^{22,23} and reaction with O_2 (eq 7b)^{22,24} are both well documented, even if precise kinetic data are not available for this particular acyl radical in aqueous solution. The evidence for reactions 7c and 8 will be presented shortly.

⁽²¹⁾ Ilan, Y. A.; Czapski, G.; Ardon, M. Isr. J. Chem. 1975, 13, 15-21.

$$\operatorname{CrOO}^{2+} + \operatorname{CMe}_3\operatorname{CHO} \rightarrow \operatorname{CrOOH}^{2+} + \operatorname{CMe}_3\operatorname{C}^{\bullet}\operatorname{O} \quad k_6 \quad (6)$$

$$CMe_{3}C^{\bullet}O \rightarrow {}^{\bullet}CMe_{3} + CO \quad k < 7 \times 10^{5} \text{ s}^{-1}$$
 (7a)

$$\xrightarrow{O_2} CMe_3C(O)OO^{\bullet} \sim 10^9 \text{ M}^{-1} \text{ s}^{-1} \quad (7b)$$

$$\xrightarrow{\text{CrOO}^{2+}}$$
 products (7c)

$$CMe_3C(O)OO^{\bullet} + CrOO^{2+} \rightarrow \rightarrow CrO^{2+}$$
 (8)

If a competent scavenger for CMe₃C[•]O or CMe₃C(O)OO[•] could be found, then the system should become kinetically simple and yield the desired rate constant for reaction 6. The scavenger should not absorb strongly in the UV and should react rapidly with acyl or acylperoxyl radicals, but not with CrOO²⁺.

Several candidates were examined. The free radical 4-hydroxy-tetramethylpiperidinoxyl (HO-TEMPO) reacts readily with C-centered radicals, but it turned out to be too reactive toward CrOO²⁺ (k $\approx 200 \text{ M}^{-1} \text{ s}^{-1}$) to be useful in the present system. 3-Methyl-1,4-cyclohexadiene and Ni(cyclam)²⁺, both of which react with acylperoxyl radicals,^{25–27} also did not work out. Solutions containing CrOO²⁺, CMe₃CHO, and 3-methyl-1,4-cyclohexadiene turned cloudy within seconds, eliminating the possibility of using the olefin as a trap in kinetic measurements. The macrocyclic nickel complex reacted too rapidly with CrOO²⁺.

The next set of experiments was conducted in the presence of Mn^{2+} , which scavenges CrO^{2+} according to eq 9,^{28,29} $k_9 \approx 10^6 M^{-1} s^{-1}$.¹¹ Unlike MeOH, Mn^{2+} does not regenerate $CrOO^{2+}$ and would appear to be a better scavenger for CrO^{2+} for kinetic purposes.

$$Mn^{2+} + CrO^{2+} \xrightarrow{H^+} Mn^{3+} + Cr^{3+} \quad k_9 \approx 10^6 M^{-1} s^{-1}$$
 (9)

At $[Mn^{2+}] = 2-10$ mM, Figure 2, the reaction obeyed pseudo-first-order kinetics precisely, and yielded rate constants that were independent of the concentration of Mn^{2+} and methanol. This result strongly supports the mechanism in eqs 4-9 and clearly implicates CrO^{2+} as the intermediate responsible for the complicated kinetic behavior in Figure 1. Under the conditions in this work, reaction 9 is so much faster than reaction 4 that methanol cannot compete for CrO^{2+} , resulting in well-behaved kinetics. The sequence of reactions 5-6, 7b, 8-9 defines the observed rate constant in the presence of Mn^{2+} and O_2 as $2k_6$. From the plot in Figure 3, the value is $2k_6 =$ $0.28 \pm 0.04 M^{-1} s^{-1}$.

Additional kinetics experiments were carried out under airfree conditions in the presence of $Co(NH_3)_5Br^{2+}$ as a potential scavenger for acyl radicals CMe₃C[•]O, as in eq 10. The complete scavenging of CMe₃C[•]O should yield k_6 directly.

(26) Nam, W.; Baek, S. J.; Lee, K. A.; Ahn, B. T.; Muller, J. G.; Burrows, C. J.; Valentine, J. S. *Inorg. Chem.* **1996**, *35*, 6632–6633.

- (28) Haight, G. P., Jr.; Huang, T. J.; Shakhashiri, B. Z. J. Inorg. Nucl. Chem. 1971, 33, 2169–2175.
- (29) Perez-Benito, J. F.; Arias, C. Can. J. Chem. 1993, 71, 649-655.

Figure 2. Effect of Mn^{2+} on the reaction between $CrOO^{2+}$ (0.12 mM) and CMe_3CHO (30 mM) in 0.10 M HClO₄ in the presence of 0.12 M MeOH at (a) $[Mn^{2+}] = 0$, $[CrOO^{2+}] = 0.16$ mM and (b) $[Mn^{2+}] = 10$ mM, $[CrOO^{2+}] = 0.12$ mM.

Figure 3. Plot of the rate constants for the reaction between $CrOO^{2+}$ and CMe_3CHO in the presence of added Mn^{2+} (2–10 mM). Conditions: $[CrOO^{2+}] = 0.05-0.13$ mM, [MeOH] = 0-0.3 M, $[H^+] = 0.10$ M, T = 25.0 °C.

$$CMe_3C^{\bullet}O + (NH_3)_5CoBr^{2+} \xrightarrow{H^+} CMe_3C(O)Br + Co^{2+} + 5NH_4^+$$
 (10)

Because of the intense UV absorption by $(NH_3)_5CoBr^{2+}$ (λ_{max} 270 nm, $\epsilon = 1.7 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$), only limited amounts can be used in kinetic experiments. The rate constant k_{10} needs to be $>5 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ if $(NH_3)_5CoBr^{2+}$ is to compete successfully with CrOO²⁺ for CMe₃C•O, $k_{7c} \approx 10^9 \text{ M}^{-1} \text{ s}^{-1}$, see later. Known reactions of alkyl radicals with Co(NH₃)₅Br²⁺ have rate constants of only $\sim 10^6 \text{ M}^{-1} \text{ s}^{-1}$,^{17,30} but acyl radicals, especially when hydrated, are strongly reducing³¹ and should react at least as fast as hydroxyalkyl radicals ($k > 10^8 \text{ M}^{-1} \text{ s}^{-1}$).³⁰ This turned out to be the case, so that small amounts of (NH₃)₅-CoBr²⁺ added to argon-saturated reaction mixtures caused the kinetic traces to become first order, as shown in Figure 4. The rate constant, measured at 290 nm, was independent of the

⁽²²⁾ Brown, C. E.; Neville, A. G.; Rayner, D. M.; Ingold, K. U.; Lusztyk, J. Aust. J. Chem. **1995**, 48, 363–379.

⁽²³⁾ Tsentalovich, Y. P.; Fischer, H. J. Chem. Soc., Perkin Trans. 2 1994, 729–733.

⁽²⁴⁾ Emanuel, C. J.; Newcomb, M.; Ferreri, C.; Chatgilialoglu, C. J.
Am. Chem. Soc. 1999, 121, 2927–2928.
(25) Nam, W.; Kim, H. J.; Kim, S. H.; Ho, R. Y. N.; Valentine, J. S.

⁽²⁵⁾ Nam, W.; Kim, H. J.; Kim, S. H.; Ho, R. Y. N.; Valentine, J. S. *Inorg. Chem.* **1996**, *35*, 1045–1049.

⁽³⁰⁾ Neta, P.; Grodkowski, J.; Ross, A. B. J. Phys. Chem. Ref. Data 1996, 25, 709–1050.

⁽³¹⁾ Occhialini, D.; Daasbjerg, K.; Lund, H. Acta Chem. Scand. 1993, 47, 1100–1106.

Figure 4. Effect of $(NH_3)_5CoBr^{2+}$ on the reaction between $CrOO^{2+}$ (0.1 mM) and CMe₃CHO (49 mM) in 0.10 M HClO₄ under Ar. (a) $[(NH_3)_5CoBr^{2+}] = 0$. (b) $[(NH_3)_5CoBr^{2+}] = 0.69$ mM. The first-order fit to the data in (b) is also shown.

concentration of $(NH_3)_5CoBr^{2+}$ in the narrow range accessible (0.28-0.69 mM). The value, which we assign to k_6 , is 0.16 $M^{-1} \text{ s}^{-1}$, close to half of that obtained in the presence of Mn^{2+} and $O_2 (0.28 \text{ M}^{-1} \text{ s}^{-1})$, in full agreement with the predictions. Additional support for the role of $(NH_3)_5CoBr^{2+}$ comes from the fact that it has no effect in O_2 -saturated solutions, in the presence or absence of Mn^{2+} , where the radicals are preferentially captured by O_2 .

All of the experimental data strongly support the proposed mechanism, including the operation of reaction 8 or a similar process which produces CrO^{2+} from $CMe_3C(O)OO^{\bullet}$ and $CrOO^{2+}$. The role of Mn^{2+} is to remove the CrO^{2+} , and the role of $(NH_3)_5CoBr^{2+}$ to prevent its formation by removing $CMe_3C^{\bullet}O$. The 1:1 stoichiometry for reaction 8 is indicated by the doubling of the rate constant when Ar and $(NH_3)_5CoBr^{2+}$ are replaced by O_2 and Mn^{2+} .

A reasonable mechanism for reaction 8 may involve an $S_{\rm H2}$ attack by CMe₃C(O)OO[•] at CrOO²⁺, producing a peroxo complex and molecular O₂, eq 11, followed by homolytic O–O bond cleavage in CMe₃C(O)OOCr²⁺, decarboxylation of O-centered radicals, and formation of much less reactive^{32,33} *tert*-butylperoxyl radicals, eqs 12–13.

$$CMe_{3}C(O)OO^{\bullet} + CrOO^{2+} \rightarrow CMe_{3}C(O)OOCr^{2+} + O_{2}$$
(11)

$$CMe_3C(O)OOCr^{2+} \rightarrow CMe_3C(O)O^{\bullet} + CrO^{2+}$$
 (12)

$$CMe_3C(O)O^{\bullet} \xrightarrow{-CO_2} {}^{\bullet}CMe_3 \xrightarrow{O_2} CMe_3OO^{\bullet}$$
 (13)

In support of reaction 11, indirect evidence for bimolecular homolytic activity of $CrOO^{2+}$ has been obtained earlier,³⁴ and the facile cleavage of the peroxidic O–O bond in $CrOOCr^{4+}$ is believed responsible for the formation of CrO^{2+} from Cr^{2+} and O_2 .¹¹ It is plausible then that $CrOOR^{2+}$ may also yield CrO^{2+} , especially if R is a bulky alkyl group like CMe₃CO. A similar O–O bond cleavage in some acylperoxonickel complexes has been invoked recently.²⁷

Table 1. Summary of the Rate Constants $(M^{-1} s^{-1})^1$ for the Reactions of Oxochromium(IV) (k_{CrO}) and Superoxochromium (k_{CrOO}) Complexes with Rhodium Hydrides and Pivalaldehyde in Aqueous Solution^{*a*}

	$k_{ m CrO}$	$k_{\rm CrOO}$	$k_{\rm CrO}/k_{\rm CrOO}$	k_{t-BuO}/k_{t-BuOO}
L ¹ RhH ²⁺	$\sim 10^4$	129	78	
L^1RhD^{2+}	2.70×10^{3}	17	160	
$(NH_3)_4RhH^{2+}$		135		
L^2RH^{2+}	1.12×10^{3}	24	47	
L^2RhD^{2+}	338			
(CH ₃) ₃ CCHO	23	0.16	140	${\sim}10^{7b}$
<i>m</i> - and <i>p</i> -XC ₆ H ₄ CH ₃				${\sim}10^{7c}$
DHA^d				3×10^{5e}

^{*a*} [H⁺] = ionic strength = 0.10 M, 25 °C. For rhodium hydrides, identical rate constants were obtained in H₂O and 10% H₂O/90% D₂O.² ^{*b*} Calculated from $k_{t-BuOO} \approx 8 \text{ M}^{-1} \text{ s}^{-1}$ in heptane⁹ and $k_{t-BuO} = 8.9 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ in 1:2 benzene/di-*tert*-butyl peroxide. Data are for propionaldehyde.⁵⁰ ^{*c*} References 6 and 43. ^{*d*} DHA = Dihydroan-thracene. ^{*e*} Estimated from the data for *t*-BuO[•] and *s*-BuOO[•] in ref 8.

The complicated kinetic behavior under air-free conditions in the absence of scavengers, Figure 1b, is probably caused by a combination of steps initiated by rapid reduction of CrOO²⁺ and/or CrOOH²⁺ by CMe₃C•O, eventually producing Cr²⁺, as observed in some other air-free reactions of CrOO²⁺.¹⁵ It is the elimination of such steps by the removal of CMe₃C•O and/or Cr²⁺ that is responsible for the effect of (NH₃)₅CoBr²⁺ in Figure 4. From the fact that the reaction of CMe₃C•O with 10⁻⁴ M CrOO²⁺, eq 7c, can successfully compete with decarbonylation, and taking $k_{7a} \approx 10^5 \text{ s}^{-1}$ in aqueous solution, we estimate k_{7c} $\approx 10^9 \text{ M}^{-1} \text{ s}^{-1}$.

The kinetics of the reaction between CrO^{2+} and CMe_3CHO , eq 14, were redetermined in 0.10 M HClO₄. As reported earlier,¹² the reaction in O₂-containing solutions failed to produce CrOO^{2+} , signaling a 1-e mechanism which does not produce free Cr^{2+} . The rate constant obtained here, $45.2 \pm 0.3 \text{ s}^{-1}$, is close to the value reported earlier at 1 M ionic strength, $37.1 \pm 6.4 \text{ M}^{-1} \text{ s}^{-1}$.¹² Based on the products, see below, we believe that $k_{\text{obs}} = 2k_{14}$, and Table 1 lists the corrected value, $k_{14} = 23 \text{ M}^{-1} \text{ s}^{1}$.

$$CrO^{2+} + CMe_3CHO \rightarrow CrOH^{2+} + CMe_3C^{\bullet}O$$
 (14)

Products. The main gaseous product of the reaction between 0.05 mM CrO²⁺ and 0.4 mM CMe₃CHO was isobutene. Small amounts of isobutane were also observed. The yield of isobutene was greatly reduced when the reaction was conducted in the presence of 0.6 mM (NH₃)₅CoBr²⁺. These results are easily rationalized by a scheme whereby the decarbonylation of acyl radicals, produced in reaction 14, is followed by the oxidation of the newly generated tert-butyl radicals by CrO²⁺, eq 15. Similarly, acyl radicals themselves are probably also oxidized by CrO²⁺, but the resulting carboxylic acid is not volatile and would not be detected by GC. Regardless of the proportion of acyl radicals that undergo decarbonylation, for every rate determining step (eq 14) an additional mole of CrO²⁺ is consumed, and thus $k_{obs} = 2k_{14}$. This would not be true if a significant portion of CMe₃C[•]O reacted with O₂ (eq 7b), an unlikely possibility at typical oxygen concentrations of ≤ 0.2 mM¹⁶ in solutions of CrO²⁺. Consistent with this picture, 0.6 mM (NH₃)₅CoBr²⁺ caused a large drop in the yield of CH₂-CMe₂.

$$^{\bullet}CMe_3 + CrO^{2+} \xrightarrow{\text{tast}} CH_2 = CMe_2 + CrOH^{2+}$$
(15)

Large concentrations of CMe₃CHO (>0.02 M) were required to make reaction 6 significantly faster than the background

⁽³²⁾ Bakac, A.; Wang, W.-D. *Inorg. React. Mech.* 1998, *1*, 65–73.
(33) Das, T. N.; Dhanasekaran, T.; Alfassi, Z. B.; Neta, P. J. Phys. Chem. A 1998, *102*, 280–284.

⁽³⁴⁾ Bakac, A.; Won, T. J.; Espenson, J. H. Inorg. Chem. 1996, 35, 2171-2175.

decomposition of $CrOO^{2+.19}$ This presented no problem in kinetic experiments, but did complicate product analysis. The gas phase above the ice-cold reaction solutions still contained large amounts of CMe₃CHO which decomposed in the injector of the gas chromatograph into equimolar amounts of isobutene and isobutane, making it impossible to determine whether any additional amounts of these hydrocarbons were produced.

All of the data point to hydrogen atom transfer as the mechanism for the reactions of CMe₃CHO with both CrO^{2+} and $CrOO^{2+}$. The effect of O₂ and $(NH_3)_5CoBr^{2+}$ on the $CrOO^{2+}$ reaction, and the effect of $(NH_3)_5CoBr^{2+}$ on the products of CrO^{2+} reaction clearly show that acetyl radicals are involved. An alternative route to the radicals, electron transfer followed by deprotonation of the aldehydic C–H bond, appears highly unlikely in aqueous solution.

As shown in Table 1, the ratio k_{CrO}/k_{CrOO} for the reactions of CrO^{2+} and $CrOO^{2+}$ with CMe₃CHO is 140, close to that obtained in the reactions with rhodium hydrides and very much smaller than k_{t-BuO}/k_{t-BuOO} of $\sim 10^7$ observed for propionalde-hyde or $10^{6\pm 1}$ for a number of other organic molecules.^{6,8} The data for the reactions of pivalaldehyde with *t*-BuO[•] and *t*-BuOO[•] are not available, but they are expected to be very similar to those for propionaldehyde.

The choice of rhodium hydrides as substrates in our earlier work is clearly not responsible for the small k_{CrO}/k_{CrOO} ratio observed. Instead, the data suggest that the energy of the O–H bonds being formed determines the reactivity ratio and the energy of the bonds being broken (Rh–H or C–H) plays a minor role at best. Such a behavior is predicted by Marcus theory^{35–39} for atom transfer,⁴⁰ because the properties of the common reactant (LRhH²⁺ or CMe₃CHO) for the pairs RO[•]/ROO[•] and CrO²⁺/CrOO²⁺ cancel out.

The application of Marcus equation to the reactions of CrO^{2+} and CrOO^{2+} with a common reagent, say CMe₃CHO, yields eq 16, where k_{12} (= k_{CrO}) and k_{13} (= k_{CrOO}) represent the rate constants for the cross reactions with CrO^{2+} and CrOO^{2+} , respectively, K_{12} and K_{13} are the equilibrium constants for the same reactions, and k_{11} , k_{22} , and k_{33} are the rate constants for the identity reactions of the couples CMe₃CHO/CMe₃C[•]O, CrO²⁺/CrOH²⁺, and CrOO²⁺/CrOOH²⁺, respectively. The work terms and f factors³⁹ in the numerator and denominator of eq 16 are not shown because the treatment assumes that they are similar and cancel out. Because of the negligible entropy difference in reaction 17, the free energy difference ΔG_{23} can be approximated as the difference in bond energies between CrOO-H²⁺ and CrO-H²⁺.

$$\frac{k_{12}}{k_{13}} = \frac{\left[k_{11}k_{22}K_{12}\right]^{0.5}}{\left[k_{11}k_{33}K_{13}\right]^{0.5}} = \left(\frac{k_{22}}{k_{33}}\right)^{0.5} \left(K_{23}\right)^{0.5} = \left(\frac{k_{22}}{k_{33}}\right)^{0.5}$$
$$\left[\exp(-0.5\Delta G_{23}/RT)\right] (16)$$

$$\operatorname{CrO}^{2^+} + \operatorname{CrOOH}^{2^+} \rightarrow \operatorname{CrOH}^{2^+} + \operatorname{CrOO}^{2^+} \Delta G_{23}$$
 (17)

The bond energy for CrO-H²⁺ is estimated as ≥ 373 kJ/mol from the thermodynamic cycle shown below at 1 M H⁺ and setting ΔS^0 for the net reaction equal to $-S^0$ for H_{aq}¹.¹ The combination with the previously estimated bond energy for CrOO-H²⁺ of 330 kJ/mol¹ yields $\Delta G_{23} \approx -43$ kJ/mol.

$$Cr_{aq}O^{2+} + 2 H_{aq}^{+} + e^{-} \rightleftharpoons Cr_{aq}H_{2}O^{3+}$$

$$\Delta G \leq -165 \text{ kJ/mol}^{11}$$

$$Cr_{aq}H_{2}O^{3+} \rightleftharpoons Cr_{aq}OH^{2+} + H_{aq}^{+} \qquad 23 \text{ kJ/mol} (pK_{a} = 4)$$

$$H_{aq}^{\bullet} \rightleftharpoons H_{aq}^{+} + e^{-} \qquad -221 \text{ kJ/mol}^{41}$$
Net:
$$Q = Q^{2+} + W \stackrel{\bullet}{\to} Q = QW^{2+}$$

$$Cr_{aq}O^{2+} + H_{aq} \stackrel{\bullet}{\rightleftharpoons} Cr_{aq}OH^{2+}$$

 $\Delta G \leq -363 \text{ kJ/mol } (\Delta H \leq -373 \text{ kJ/mol})$

The uncertainty in ΔG_{23} is large, because two of the constituent parameters, the potential for CrO^{2+}/Cr^{3+11} and the bond energy¹ for LRh-H²⁺ are only estimates. With this in mind, and assuming for the moment that $k_{22}/k_{33} \approx 1$, we calculate k_{12}/k_{13} (= k_{CrO}/k_{CrOO}) $\ge 6 \times 10^3$. The agreement with the observed value of $\sim 10^2$ is not unreasonable within the framework of Marcus theory. Similar calculations for t-BuO[•]/t-BuOO[•], using bond energies of 440 kJ/mol (BuO-H)⁴² and 369 (BuOO-H)³³ and again assuming similar rate constants for the identity reactions for BuO•/BuOH and BuOO•/BuOOH yields kBuO/kBuOO $\approx 10^{6}$. The close agreement between the calculated and observed values for the organic radicals, Table 1, and the acceptable agreement in the case of chromium complexes supports the assumptions built into the calculations and points to the O-H bond energies as a factor most responsible for the observed reactivities. Interestingly, a strong correlation has also been found between the energy of the O-H bond formed and the kinetics of oxidation of organic materials with CrO₂Cl₂ and MnO₄^{-.43}

The finding that $CrOO^{2+}$ is only 10^2 times slower than CrO^{2+} in hydrogen abstraction reactions may require some of the catalytic oxidation schemes to be rethought. With some exceptions,^{44–48} the existing mechanisms usually have metal—superoxo species as (relatively unreactive) precursors to the more reactive oxidizing intermediates,⁴⁹ including metal—oxo species. With the reactivity differences smaller than previously thought, at least in the chromium case, it becomes possible for some superoxo complexes to be actively involved in substrate oxidation. Clearly, more data are needed on the reactivity of oxo and superoxo complexes of the same metal and ligand systems. Unfortunately, not too many examples of such pairs are known and we are currently exploring new methods for their generation.

- (36) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265–322.
 - (37) Hush, N. S. Trans. Faraday Soc. 1961, 57, 557-580.
 - (38) Hush, N. S. Prog. Inorg. Chem. 1967, 8, 391-444.
 - (39) Sutin, N. Prog. Inorg. Chem. 1983, 30, 441-498.
- (40) (a) Suhnel, J. J. Phys. Org. Chem. **1993**, 6, 281–286. (b) Murdoch, J. R. J. Am. Chem. Soc. **1983**, 105, 2159–2164. (c) Thorp, H. H.; Liu, W.
- J. Am. Chem. Soc. **1965**, 105, 2159–2104. (c) Thoip, H. H., Eld, W. J. Am. Chem. Soc. **1995**, 117, 9822–9825. (d) Kristjansdottir, S. S.; Norton,
- J. R. J. Am. Chem. Soc. **1995**, 117, 9822 9825. (d) Kitstjansu J. R. J. Am. Chem. Soc. **1991**, 113, 4366–4367.
- (41) Wayner, D. D. M.; Parker, V. D. Acc. Chem. Res. **1993**, 26, 287–
- 294.
- (42) McMillen, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982, 33, 493–532.
 - (43) Mayer, J. M. Acc. Chem. Res. 1998, 31, 441-450.
 - (44) Nishinaga, A.; Tomita, H. J. Mol. Catal. 1980, 7, 179-199.
- (45) Nishinaga, A.; Yamato, H.; Abe, T.; Maruyama, K.; Matsuura, T. Tetrahedron Lett. 1988, 29, 6309–6312.
- (46) Bailey, C. L.; Drago, R. S. Coord. Chem. Rev. 1987, 79, 321–332.
 (47) Stern, E. W. J. Chem. Soc., Chem. Commun. 1970, 736.
- (48) Kropf, H.; Knaak, K. Tetrahedron 1972, 28, 1143-1151.
- (49) Sheldon, R. A. In The Activation of Dioxygen and Homogeneous Catalytic Oxidation; Barton, D. H. R., Martell, A. E., Sawyer, D. T., Eds.;
- Plenum: New York and London, 1993; pp 9–30.
- (50) Chatgilialoglu, C.; Lunazzi, L.; Macciantelli, D.; Placucci, G. J. Am. Chem. Soc. **1984**, 106, 5252–5256.

⁽³⁵⁾ Marcus, R. A. J. Chem. Phys. 1965, 43, 679-701, 2654-2657.

^{*a*} Solution phase.

Now that kinetic data are available for hydrogen atom abstraction from similar compounds, the absolute rate constants for organic and metal-based intermediates can be compared for the first time. As expected, *t*-BuO[•] is by far the most reactive $(k = 9 \times 10^7 \text{ M}^{-1} \text{ s}^{-1})$ and CrOO²⁺ the least (0.16 M⁻¹ s⁻¹). On the basis of the perception that transient, high-valent metal oxo complexes are highly reactive whereas alkylperoxyl radicals are not, one might find the similarity between k_{CrO} (23 M⁻¹ s^{-1}) and k_{BuOO} (8 M⁻¹ s⁻¹) surprising. Metal—oxo complexes may indeed be more reactive than alkylperoxyl radicals in electron transfer and oxo-transfer reactions. The energies of the element-hydrogen bonds for CrO²⁺/CrOH²⁺ and *t*-BuOO[•]/*t*-BuOOH are, however, quite comparable (Table 2), and the similarity between the two rate constants simply supports the picture whereby the reactivity in hydrogen abstraction reactions is indeed determined by the energy of the OH bonds.

Acknowledgment. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences under contract W-7405-Eng-82. Useful discussions with Dr. J. H. Espenson are gratefully acknowledged.

JA993371S